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Two numerical methods for studying nonlinear interactions be-
tween spatially periodic water waves of disparate length scales are
explored. Both use a time-stepping procedure, but one solves the
boundary value problem at each time step by a boundary integral
equation and the other uses a high-order spectral method. The
central issues are the restrictions on accuracy of the spectral method
associated with its inherent internal perturbation expansion and the
propagation of numerical boundary integral method errors from
the edge of the computational domain into its interior. The spectral
method was found to be accurate for larger values of the product
of long-wave amplitude and short-wave number than one might
expect. Two methods of correcting numerical errors at each time
step in the boundary integrat equation method are explored. Qne
evaluates the vertical derivative of the velocity potential at the sur-
face by use of computed values of the potential on the vertical sides
of the domain. The other replaces computed values by interpolated
values based on spatial periodicity. Using either of these allows the
houndary integral method to be used for larger values of the product
of long-wave amplitude and short-wave number and for steeper
waves than can be handled by the spectral method, but at substan-
tially greater computational expense. © 1995 Academic Press, Inc.

1. INTRODUCTION

With the advance of computational capability, numerical
treatment of noniinear water wave dynamics has experienced
considerable progress in recent years. For the most part, the
essential nonlinear features can be considered by inviscid hy-
drodynamic models. These can be divided into two classes:
rotational and irrotational. Here we consider the latter which
is appropriate for focusing on interactions between waves. The
solution quantities usvailly sought are the free-surface elevation
and the velocity potential distributions.

Computational methods for wave—wave interactions can be
carried out in water of finite depth with a lower boundary for
the computational domain or for infinite depth where the domain
depth is made large enough for the fluid motion beneath it to
be negligible. Since the domain size must be finite out of
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necessity, consideration at the vertical boundaries at its hori-
zoutal extents is required.

For some transient wave problems, initial conditions with
no fliow or wave elevation at the domain edges can be used
with the computation terminated before there is significant wave
motion ai the edges. However, in mosi computational wave—
wave interaction problems the edges are involved. One example
is wave motion in a region bounded by walls which leads to
Neumann boundary conditions on these walls. Problems with
progressive waves generally involve periodicity conditions on
the boundaries and it is these problems that are of particular
interest to us here. .

Although there are some exceptions, most numerical methods
for wave--wave interactions in finite domains have maximum
nutnerical error at or near the domain edges. These errors may
be of small consequence when a boundary problem has to be
solved only once. However, solutions to nonlinear wave—wave
interaction problems are usually obtained in the time domain
by time-stepping the governing equations with the boundary
value problem solved at each time step. This can lead not
only to an increasing error with cach time step, but also to
propagation of the error to more interior parts of the computa-
tional domain. As a result, it is important to develop and use
numerical solution methods with the smallest possible numeri-
cal error over the entire domain.

Most of the developmental efforts for numerical solutions
to wave—wave interaction problems have been for two-dimen-
sional flow. This limits consideration to waves which all propa-
gate in the same direction. Our interest s in three-dimensional
problems. They have greatly increased demands on computa-
tional resources. The combination of the needs for very small
numerical error in solution of the wave interaction boundary
value problems and for carrying out the solutions in three
dimensions has led to the study and development of the numen-
cal methods that are described here.

Two numerical methods for wave—wave interaction prob-
lems with periodic boundary conditions have had considerable
development, One, called the spectral method, is a high-order
perturbation theory expansion for the solution which is specified
as the sum of the contributions at each order [2, 20]. The
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solution at each order is represented as a sum of modes, each
of which varies sinusoidally in the horizontal directions and
exponentiatly in the vertical direction. Values of the velocity
potential and its vertical derivative at the position of the undis-
turbed free-surface are expanded in Taylor series to obtain the
needed estimates of these functions on the displaced free-
surface,

When the waves are steep, or when interactions between
waves of disparate length scales are considered, the vahdity of
the spectral method has been questioned [9]. For example,
in the interaction between a long wave of amplitude @ and
wavenumber &, and a short wave having amplitude a; and wave-
number k., we would like to examine cases for which gk, >
1. In other words, the long-wave amplitude is not necessarily
small in comparison to the short wave length. There is no
guaraniee that continuations of short-wave quantities over dis-
tances of long-wave amplitudes by truncated Taylor series are
accurate under these circumstances.

The other numerical method is the boundary integral equation
method (BIEM) in which Green’s theorem is used after each
time step to compute normal velocities on the free-surface. This
approach avoids the limitations of perturbation theory, but can
have excessive errors at the domain edges. One way of imple-
menting the BIEM is to use a Green function that is spatially
periodic for two-dimensional problems and spatially doubly-
periodic for three-dimensional problems. In these implementa-
tions, detailed integrations of the Green function over surface
panels in the domain are carried out and the sum of the infinite
series associated with point sources and dipoles at all surface
image points is used to effectively remove the edges of the
computational domain. We shall see that this approach intro-
duces excessive errors near the domain edges due 10 the inherent
approximation of singularity panels by point singularities out-
side the computational domain,

In this paper, we develop methods of correcting BIEM results
ar domain edges so the process can be used effectively in time-
stepped solutions to nonlinear wave—wave interaction problems
in both two and three dimensions. The process is applied to
three problems, one of which has a well-known solution which
can be used as a basis for comparison.

The same problems are solved here by a higher-order spectral
method. Although this cannot be used for waves that are quite
as steep as can the BIEM, the steepnesses and values of gk,
for which the spectral method is accurate are remarkably large.

The two principal contributions here for computations of
nonlinear wave interactions are the edge correction methods
for the BIEM and the demonstration of the accuracy of the
spectral method for interactions between waves of disparate
length scales.

2. DESCRIPTION OF THE NUMERICAL METHODS

Time-stepping of the free-surface position, { and of the value
of the velocity potential, ¢ on the free-surface is done with the

free-surface boundary conditions:
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where V = (d/dx, 3/9y) denotes the horizontal gradient. In
order to contipue the time-evolution process, updated values
of ¢, at the free-surface must be determined after each time
step. The difference between the spectral and the boundary
integral equation methods lies in the way ¢, is determined.

The time integration of the free-surface boundary conditions
is done numerically using a high-order scheme. For our calcula-
tions with the spectral method, we adopted the fourth-order,
explicit Runge—Kutta method {6] with a constant time step.
For the BIEM applications, a fourth-order, multi-step Adams—
Bashforth-Moulton method [6] is preferred over Runge—Kutta
due to its computational efficiency as the numerical technique
1s computationally expensive. Various time step sizes were
tested in each of our calculations. A general finding was that
a good time step size is 2—3% of the shortest fundamental wave
period in the problem under consideration. No significant gains
in accuracy were achieved with shorter time steps.

During the time-stepping procedure, a high-wavenumber in-
stability on the free-surface develops which, if not suppressed,
eventually causes the numerical scheme to break down. This
type of instability, often referred to as sawtooth, has been
reported by several investigators [3, 4, 10, 12, 19]. We adopted
a fast Fourier transform (FFT) technique by which ali the high
wavenumber instabilities are filtered out. The surface wave
elevation and the velocity potential are transformed into the
Fourter space by a two-dimensional FFT, and then all the
higher-order harmonics that are above the wavenumber at which
the instability is detected are filtered out. Then transforming
back into the physical space by an inverse FFT, the computa-
tions can be carried out for the succeeding time steps. A mathe-
matically equivalent procedure is direct spatial filtering. How-
ever, the required two-dimensional convolutions are more
demanding of computer time than are the Fourier transforms
and wavenumber domain cutoffs that we have used. The global
accuracy of the numerical scheme is monitored by computing
the total energy and the horizontal momenta. These guantities
are typically maintained to within 1%.

2.1. Spectral Method

Dommermuth and Yue [2] and West et al. [20] have devel-
oped a high-order spectral method for the study of nonlinear
gravity waves. These references provide complete descriptions
50 we only summarize the method here.

The spectral method differs from the direct numerical method
inthe way that it evaluates the vertical derivative of the potential
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after each time step. The velocity potential is expressed in terms
of a perturbation series of the free wave modes expanded to
an arbitrary order in wave steepness about the reference surface,
z = 0. The objective is to express the vertical velocity in terms
of the surface potential and the wave elevation. Once this is
done, time-forwarding of the evolution equations can proceed.
The spectral method presupposes that the velocity potential can
be expanded as a regular perturbation expansion in the form

M
b, z,0) = E_l b,(x,z, 1), (3)

where x = (x, y) and M denotes the order of expansion adopted
in the procedure. Following Dommermuth and Yue, each &,
is expanded in a Taylor series about z = 0 and the surface
potential is obtained as
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Expanding Eq. {4) and collecting terms at each order, we get
the following sequence of equations for the unknown &,’s in
terms of the surface potential ®g(x, £):

P (x, 0,0 = Dyx, 0, (5)
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The velocity potential at each order m (assuming periodic
boundary conditions) for a wave field composed of N free wave
modes can be expressed by the sum

N
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where the k,’s are the wavenumber harmonics of the horizontal
domain, K = (k. &,), and deep water is implied. The modal
amplitudes, ¢, ,, are found by substituting Eq. (7) inte (5) and
(6), and solving for the unknowns. The vertical velocity is then
approximated by
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Fast Fourier transforms are employed for moving back and
forth between the physical and Fourier domains. For the time-
stepping procedure, all the horizontal gradients of the surface
potential and the wave height are performed in the Fourier
domain. Starting with prescribed initial conditions for ®s(x, 1)
and {(x, ty), the free-surface boundary conditions are integrated
in time over equally spaced collocation points, and the new
values of the surface potential and the free-surface shape are

computed in the physical domain. Based on the above approach,
we prepared a computer algorithm for solutions of nonlinear
wave problems presented herein.

2.2. Boundary Integral Equation Method

One way to compute the velocity potential or its normal
gradient for potential-flow problems is the direct application
of Green’s theorem. We consider solutions for the velocity
potential, ¢, and its derivatives that are square-integrable in a
simply-connected doimain whose surface is denoted by S. Upon
the application of Green’s second identity, the value of ¢ at
any point on the boundary is given by the integral equation j22)
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where the first integral is in the sense of a Cauchy principal
value and excludes itegration over the source point q = (£, 7,
), where the singularity is located. p = (x, v, 2) is the field
point. G{p, q) is the three-dimensional free-space Green func-
tion defined by

1
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where [p — q is the distance between the source and field points.

We will solve the integral equation (9) numerically by dis-
cretizing the boundary § into N quadrilateral panels and by
satistying the equation at a prescribed collocation point on each
panel. The simplest form is to consider the singularity strengths
to be constant on each panel and each panel to lie in a plane.
Although the approach may seem crude, the comparisons we
shall provide show that the results are remarkably accurate.
Each integral in Eq. {9) now depends only on the form of the
Rankine source Green function in Eq. (10) and the geometry
of panels. Explicit expressions for these integrals, which we
have used in cur numerical implementation, are given by New-
man [14].

Some aspects of our BIEM are new and different from previ-
ous developments so we will describe our approach in some
detail. We consider the free-surface flow in a bounded region
composed of a free-surface and four vertical faces. Since deep
water waves are considered, the computational domain can be
freed of the bottom face, provided that the domain is deep
enough so that there is no flow at its bottom. Spatially periodic
solutions are considered so that the boundary conditions on the
side faces become periodicity conditions. The vertical faces are
partitioned into panels by a rectangular grid and the periodicity
conditions are invoked at the center of each panel. The free-
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surface is partitioned into subsurfaces by a rectangular grid
with constant spacing in each of the x- and y-directions. The
free-surface shape changes with time, and at each time step,
each subsurface is approximated by a best-fit tilted quadrilateral
panel by the method of Hess and Smith [8]. Collocation points
are chosen at the centroid of each panel where the boundary
conditions will be invoked to update the vertical surface motion
and the velocity potential on the free-surface. For the next time
step, ¢, is determined by solving the integral equation (9) and
the process is repeated, but one intermediate step must first be
carried out. Time-stepping by use of the free-surface boundary
conditions provides elevations at the collocation points. How-
ever, to generate the set of tilted quadrilateral panels on the
free-surface needed for solving the integral equation (9), eleva-
tions at the panel corners are required. The numerical grid
generation for the comner heights is done through a bicubic
interpolation of the wave elevations prescribed at the colloca-
tion points. The interpolation function matches the surface ele-
vation at each collocation point, and the elevation and its gradi-
ents change in a continuous manner from one grid point to the
other. The numerical implementation in Chapter 3 of Press ef
al. [17] is adopted for the above procedure. In order that this
process give accurate results at those comer points along the
domain edges as well as at interior corner points, we apply
the bicubic interpolation over a surface region larger than the
domain by extending it on the basis of spatial periodicity
(Fig. 1).

A well-known problem in numerical applications of the
BIEM, although not studied in detail by others, is the rather poor
accuracy along the edges of the boundaries. The discontinuity in
the normal direction and in the normal gradient of the potential
at the edge elements impairs the accuracy of numerical solutions
to boundary integral equations [7, 18]. The importance of the
accuracy along the edge panels on the {ree-surface lies in the fact

that errors there propagate through the computational domain
during the time-stepping process because of the hyperbolic
nature of the boundary conditions. Use of doubly-periodic
Green functions for three-dimensional problems eliminates the
need for the vertical sides of the computational domain [21].
This approach, however, can lead to large errors at the edges
as is shown in the Appendix.

For testing techniques to diminish the local errors at the edge
elements, we applied the BIEM to a uni-directional Stokes
wave with a steepness of 0.1. Using 25 panels along the wave
propagation direction and 20 uniformly spaced elements along
the depth, taken as half the wavelength, we computed the error
in the normal velocity on the free-surface relative to the exact,
theoretical values. The maximum relative error occurs at the
corners of the domain with a value of 4.5%. Increasing the
number of elements along the depth improves the accuracy
along the edges. This approach, however, becomes impractical,
perhaps prohibitive, for cases that require larger domains with
more elements on the boundaries due to rapid increase in the
computational expense. On the other hand, we can achicve
further reductions in the edge errors with the same number
of elements by use of a nonuniform spacing in the vertical
discretization. Considering the exponential decay in the velocity
potential away from the free-surface, it is anticipated that a
panel distribution that provides more elements near the surface
will improve the accuracy of the solution near the domain
edges. We tried a quarter-period cosine-spacing distribution
along the depth. This scheme gencrates a grid of the form in
the vertical direction

z, = hcos (ﬂ) —h forn=0,..,N, (1)

2N,

where £ is the depth and N, is the number of elements in the
z-direction. This nonuniform vertical spacing with N, held fixed
at 20 reduced the error at the comers to 1.1%. Considering the
exponential decay with depth for deep water waves, a welcome
feature of the cosine-spacing distribution is that it provides a
better representation of the potential and its normal gradient
in regions of rapid variations. For applications which involve
several wave components, the depth of the domain is deter-
mined by the maximum wavelength in the field. Inn the presence
of disparate length scales, a cosine-spacing distribution in-
creases the density of the collocation points near the free-
surface, and thus provides better spatial resolution for the small-
est wavelength involved. In general, we used the cosine-spacing
on vertical faces. One exception is that we used uniform spacing
to investigate the influence of domain depth, since this provides
more panels near the bottom.

We studied two technigues to further diminish the local error
on the edge panels without materially increasing the computa-
tional eftort. The first technique is based on our finding that
the accuracy in the computed velocity potential on the vertical
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faces, unlike its normal gradient, is fairly accurate throughout
the entire depth. Hence, the vertical derivative can be accurately
calculated numerically between collocation points on the verti-
cal faces. In the first technique we extrapolate the vertical
derivatives up to the surface with a second-order numerical
extrapolator. Having computed the vertical gradient of the ve-
lecity potential on the free-surface for all the inner points, we
can now accurately compute the vertical gradient of the poten-
tial on the edge panel, which is where the error in the solution
was maximum, by a cubic interpolation using all the inner
points and the ones computed by extrapolation from the sides.

The second technique we implemented does not use the
potential on the vertical sides, but uses all the collocation points
on the free-surface, except the ones at the edges, to form a
cubic spline for the normal velocity on the surface. An essential
feature of this process is fitling each spline over a length that
exceeds the domain length by using the periodicity condition
10 obtain values outside the domain. Then we evaluate the
normal velocity at the edge points by the interpolation provided
by the cubic spline function.

Both of the edge correction technigques performed well in
reducing the local error at the edges and provided much im-
proved overall accuracy for the solution. The application of the
second technique to our Stokes wave problem reduced the
maximum error at the corners from 1.1% to 0.5%. Time-domain
simulations of exact, progressive Stokes waves show this level
of error to be acceptable in the sense that the error does not
grow materialty when the computation is extended over several
wave periods,

Both edge correction techniques have been used in our appli-
cations. Having similar characteristics, one is not really superior
to the other. The selection of the method depends more on
the specific application. For example, the second technique is
difficult to implement when only a few elements are needed
in the transverse direction along which a cubic interpolation is
not suitable due to sparsity of the control points. This applies
to time-domain simulation of two-dimensional waves with our
three-dimensional codes.

3. NUMERICAL RESULTS

The fineness of the spatial discretization is necessarily a
compromise between accuracy and computational expense. The
effect of the spatial discretization in horizontal directions cn
the surface will be investigated in our subsequent application
of the BIEM to Stokes waves. This will form the basis of our
spatial discretization in the other numerical applications of the
method. The spacing along the x- and y-directions on the vertical
sides of the domain are determined by the spacing used on the
free-surface along the same directions. The depth of the domain
must be selected such that no significant improvements in accu-
racy result from making it deeper. This depth is expected to
be on the order of one-half a wavelength, where the velocity
potential is about 4% of its value at the surface. To determine

the sensitivity of numerical calculations to domain depth, we
applied the BIEM to a uni-directional Stokes wave with a
steepness of 0.1 and used 25 uniformly spaced elements in
each horizontal direction. We used uniformly spaced elements
in the vertical direction along which the local grid size was
selected to be 35 of the wavelength. Using different domain
depths, we computed the normal velocity ¢, on the free-surface
and compared it with the exact, theoretical one, ¢,. The RMS
relative error for the normal velocity on the free-surface was
evaluated as

N, e 12
RMS-Emr:(iz [————(‘f’")" (‘b")f]z) . (12)
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where (¢,)ns is the maximum normal velocity and N, is the
total number of nodes on the free-surface. The RMS error drops
to a nearly constant value of 0.34% at a water depth of 40%
of the wavelength. In ali of our subsequent applications, how-
ever, to be conservative on the side of accuracy the domain
depth will be set o 50% of the longest wavelength involved
in the wave field.

We first applied our three-dimensional programs to two-
dimensional problems for the simplest comparisons. To assess
the accuracy of both methods, time domain simulations of exact,
progressive Stokes waves were conducted for a variety of wave
steepnesses. A second two-dimensional example was the inter-
action of long and short waves that propagate in the same
direction. We then applied the methods to a three-dimensional
problem in which a short wave rides on the surface of a long
wave with perpendicular propagation directions.

3.1, Stokes Waves

To test the accuracy of the numerical implementations, we
conducted a series of runs for time-domain simulations of stead-
ily progressing Stokes waves of finite amplitude. For the com-
parison we used exact Stokes waves evaluated by the method of
Monkmeyer and Kutzbach [13]. This gave results for nonlinear
period and phase speed convergent to 10 significant figures up
to & = 0.4 which corresponds to 90% of the limiting Stokes
steepness.

A Stokes wave with a wavelength of 27 is chosen for the
numerical computations. The spatial resolution along the wave
propagation direction is determined by 16, 32, and 64 panels.
Only 5 panels are used in the transverse direction as this is a
uni-directional wave. A depth of half the wavelength is discret-
ized into 20 elements with a quarter-period cosine-spacing dis-
tribution, Table I is a list of the runs we conducted with the
BIEM. In this table, N, denotes the number of panels per wave-
length and T refers to the nonlinear wave period. We provide
the average and maximum relative errors (on a percentage
basis) for each run computed as
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TABLE 1

List of Runs Done for the Stokes Wave Simulations
Using the BIEM

Time
Run  Steepness N, Period (\@T) step  Avg. error Max. error
I .10 i6 62518363271 T/20 1.92% 347%
2 0.10 16 62518563271 T/40 1.90% 3.46%
3 0.10 32 6.2518563271 T/40 0.59% 0.83%
4 0.20 32 6.1587600708  T/40 0.66% 0.86%
5 .20 64 6.1587600708  T/80 0.10% 0.15%
6 .30 64  6.0067763329  T/80 0.15% 0.35%
7 0.40 64  5.8085861206 T/80 0.36% 1.34%
elative Error = 100 ——"——, (13)
| g'max

where { is the exact, and Z is the computed wave profile.

Time-domain simulations of the Stokes waves were con-
ducted for one wave period. Table I reveals that the spatial
resolution is the key parameter for accurate computations of
the surface profile. For a wide range of steepnesses, 64 control
points per wavelength provided reasonable numerical accuracy.
For £ = 0.4, the maximum steepness for which we obtained
convergent results for the “‘exact’” method of Monkmeyer and
Kutzbach [13], we calculated the maximum relative error to
be 1.34%. In view of the spatial resolution adopted in the
computations, the accuracy of the BIEM for 90% of the limiting
Stokes steepness is considered satisfactory.

To demonstrate the accuracy of the spectral method, we
carried out the simulation of a Stokes wave with steepnesses
0.3, 0.35, and 0.4 for one wave period. The computational
parameters are shown in Table II. ¥, is the number of equally
spaced Eulerian points on the free-surface, and M is the order.
The spectral method performed well for steepnesses up to 0.35.
For steepness 0.4, as the simulation progressed, a sawtooth
instability in the lower wavenumber components appeared and
soon thereafter computations broke down. This is consistent
with the findings of Dommermuth and Yue {2] that for steep-
nesses beyond 0.35, convergence is poor and eventually fails.

TABLE II

List of Runs Done for the Stokes Wave Simulations Using the
Spectral Method

Run  Steepness N, M  Timestep  Avg. ermor  Max. emor
1 0.30 2 10 T/40 0.054% 0.108%
2 0.30 iz 1o T/80 0.045% 0.095%
3 0.30 64 10 T/80 0.009% 0.026%
4 0.35 64 10 T/80 0.080% 0.360%
5 0.40 128 10 T/80 — —

Thus, the spectral method can be used for rather steep waves,
but not quite as steep as those that our BIEM can handle.

3.2. Two-Dimensional Long—Short Wave Interactions

It is well known that short waves riding on much longer
waves tend to become shorter and steeper at the crests of the
long waves, and longer and less steep at the troughs. This was
first predicted by Longuet-Higgins and Stewart [11] using a
perturbation approximation correct to second order. For numeri-
cal calculations in this section, we shall consider the modulation
of a short wave on the surface of a longer wave and determine
the spatial changes in the wavenumber of the short-wave com-
ponent when both waves propagate in the same direction. We
adopt a long/short wavelength ratio of A/A; = 8 and a short-
wave steepness of ak, = 0.05. A wide range of steepnesses
from 0.05 to 0.35 is examined for the long-wave component.
Thus, values of @k, up to 2.8 are considered. This is surely too
large for second-order perturbation theory to be accurate, but
it should be well handled by the BIEM and it provides a good
opportunity to assess the accuracy of the high-order spectral
method.

For the BIEM, the free-surface geometry is approximated
by 64 eclements in the wave propagation direction for long-
wave steepnesses 0.05 through 0.15. We use 128 elements for
steepnesses greater than 0.15. Along the depth, which is half
the wavelength of the long wave, 20 elements are used with a
guarter-period cosine-spacing distribution. As both waves
travel in the same direction, only 5 elements are used in the
transverse direction. For the spectral method, the same number
of elements are used on the free-surface for the corresponding
long-wave steepnesses. For both methods, smoothing is applied
at every time step such that wavenumbers above the 16th har-
monic of the fundamental are filiered out. A time step of g5 of
the nonlinear long-wave period is found to be quite satisfactory
and used for both methods.

The initial conditions used are the superposition of a sinusoi-
dal short wave on a long, fully nonlinear Stokes wave. The
time evolution was carried out for 1.6 short wave periods.
Figure 2 shows the time evolution of the short wave amplitude,
which was determined by a spatial Fourier analysis after each
time step, for a long-wave steepness of 0.2. The BIEM and
spectral method are in excellent agreement.

Figure 2 shows that the short-wave amplitude diminishes
from its initial value when the waves interact. This is due to a
third-order interaction between the waves as explained by Ol-
mez [16]. The responsible third-order wave here is proportional
to the short-wave amplitude and to the square of the long-
wave amplitude. The effect is well known when a single wave
component interacts with itself at the third-order [5] and is then
called the ‘‘Stokes effect.””

For several values of long-wave steepnesses, Fig. 3 gives
the spatial changes in the wavenumber of the short wave at
crest and at the trough of the long wave. They were determined
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TABLE III
Contribution to the Vertical Velocity at Each Order in the
Expansion
Order (M) 1 2 3 4 5 6
Ratic (%) 4.8 12.7 32.5 316 155 2.8

from the wave profile by filtering out the long-wave component
and measoring the zero-crossing distances of the remaining
short wave, When the long-wave steepness is small {for steep-
nesses smaller than 0.1), the second-order perturbation theory
is in good agreement with the numerical calculations as ex-
pected. The agreement between the spectral method and the
BIEM is remarkably good up to a long-wave steepness of 0.25
for which gk, = 2.0. For larger long-wave steepnesses, the
differences in the numerical methods become noticeable, such
that for a long-wave steepness of 0.35, the numerical results
differ by as much as 17%. This is consistent with our findings
from computations with Stokes waves and attributed to the
steepness exceeding the region of validity of the spectral
method. It is really quite remarkable that the spectral method
is accurate for ak, as large as 2.0, in view of the fact that it
involves estimation of short-wave surface properties from a
Taylor series based on derivatives that are 40% of the short-
wave lengths distant from the surface. It is enlightening to
investigate why this is so. To do this, we have done a Fourier
analysis of the contribution to the vertical velocity at each order
and have picked out the Fourier amplitudes associated with the
short wave. Table I shows the contribution at each order to
ihe total vertical velocity with M = 6 for a long-wave steepness
of 0.25. Although the largest contributions to the velocity come
from the third- and fourth-order terms, convergence is achieved
rapidly as higher order terms are included. Even though the
sixth-order is only two orders removed from the very influential
fourth-order term, it contributes to only 2.9% of the solution.
For this long-wave steepness, the spectral method compares
favorably with the BIEM because the terms that are of large
magnitude are captured in the perturbation expansion. Brueck-
ner and West [1] indicate that the spectral method could be
better for long—short wave interactions than might first be
thought because of the cancellation of terms that become large
at large expansion distances. Although our results do not prove
the contention of Brueckner and West, they certainly help sup-
port them. On the other hand, it is important to note that conver-
gence of the spectral method does not guarantee that it con-
verges to the exact solution in all respects, As an example, for
the long—short wave interaction considered here, with a long-
wave steepness of 0.30, we found that the contribution to the
velocity at the eighth-order is 1% of the total. Despite satisfac-
tory convergence, results of the spectral method for the modo-
[ated wavenumber deviate from those of the BIEM at this
steepness by about 6% as is evident from Fig, 3. This demon-

strates that there is a limit to wave steepness for which the
spectral method is valid, but it can be accurate for larger steep-
nesses than might have been expected heretofore for wave
problems of disparate length and amplitude scales.

3.3. Three-Dimensional Long—Short Wave Interactions

Although we used a three-dimensional BIEM for the preced-
ing calculations, the nature of the problems was essentially
two-dimensional. For a comparison between the numerical
methods for an intrinsically three-dimensional situation, we
computed the free-surface profiles when the short wave propa-
gates at an angle of @ = 90° with respect to the propagation
of the long wave. The calculations were carried out for one
long-wave period. The short- and long-wave steepnesses were
0.05 and 0.2, respectively. Again, we set A/A, = 8. For the
spectral method with @ = 90, we set M = 6, and used 32 and
16 points in the x- and y-directions with corresponding filtering
at the 10th- and 5th-orders. For the BIEM, the samme number
of elements on the surface is used with the same smoothing
parameters. An example is shown in Fig. 4 which gives the
short-wave profile along its propagation direction over the zero-
crossing position of the long wave, after the waves have evolved
for one long-wave period. Results from the BIEM and from
the spectral method are very nearly identical. They differ by
only about (1.3% of the long-wave amplitude. Although the
BIEM can represent wave systems alimost up to their limiting
steepnesses, the faster computing spectral method does very
well for this moderate steepness of 0.2.

Figure 5 shows the spectral method result for the short-wave
profile at locations of the crest and the trough of the long wave,
again after the wave system has evolved for one long-wave
period. In this figure, the mean value, which is mainly the long-
wave elevation, has been subtracted from each profile so the
modulation of the short wave by the long wave can be easily
seen. This figure shows the applicability of the numerical meth-
ods for computing amplitude modulations.

4. CONCLUSIONS

The main objectives of the present work were to develop
the three-dimensional direct method and to compare its perfor-
mance with that of a spectral method which utilizes the pre-
sumptions of perturbation theory, but which includes perturba-
tions of very high order. To the best of our knowledge, this is
the first effort towards comparing the computations of nonlinear
wave interactions from the spectral method against a direct
numerical technique (BIEM) that is not subject to the restric-
tions of perturbation theory.

Two important contributions of the present study can be
summarized as follows:

* We developed a new technique for very effectively minimiz-
ing errors at the edges of a computational domain for three-
dimensional boundary integral equation methods.
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FIG. 6. Maximum edge error as a function of number of image sources.

* In long—short wave interactions, we found that the spectral
method was valid for larger values of long-wave amplitude and
short-wave number than might have been expected. However,
as the steepness is increased, a point is reached where the
spectral method becomes noticeably more erronecus than the
direct method.

For wave problems with moderate steepnesses, the advantage
of the spectral method is that it is computationally much more
efficient than the direct method which is computationally costly,
especially for three-dimensional applications. However, the
availability of computers with vector hardware and large virtual
memory makes the applications of the direct method, which
can handle waves of larger steepnesses, practical today for
some problems and will make themn even more practical in the
near future.

APPENDIX: EDGE ERROR FROM USE OF PERIODIC
GREEN FUNCTIONS

The vertical domain faces can be eliminated by use of a
doubly periodic Green function:

Gy, & O =1x— &+ -+ - "
+ 2 [ —mL — £ + (y— nW — my

+@=- 0N (14)

where 2,,,_,, denotes summation over all positive and negative
integers m, r except m = n = (. The dimensions of the periodic
domain are represented by L and W. The approach is to consider
an infinite surface around the computational domain. Inside the
domain integration is done over the panels and outside the
integral is approximated by the product of the singularity at
the panel centroid and the panel area. The infinite sums in the
above equation converge, but not so fast as to be useful for
routine computation. Newman [15] has developed an efficient
summation formula for the doubly-infinite sum of image
sources in the interior of a rectangular channel subject to homo-
geneous Neumann conditions on the boundaries. His work was
modified by Xu and Yue [21] to make this approach suitable for
the periodic free-surface problems. However, for demonstration
purposes it is more enlightening to determine the error in terms
of the number of image sources. To do this, we compulted the
Green function with a brute force evaluation of the series for
a Stokes wave problem. We varied m and » from 10 to 500
and computed the maximum error in the vertical velocity at
the edge elements. Figure 6 shows the convergence with the
number of image sources used in the calculations. The curves
correspond to Stokes wave steepnesses of 0.05, 0.10, and 0.20
for which the maximum error converged approximately to 5, 10,
and 20%, respectively. Rather large error at the edge elements is
due to the fact that the influence on these points of nearby
source images outside the computational domain was calculated
by the product of panel area and the inverse distance, rather
than the integration of the Green function over the source panel.
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These errors can be reduced by using panel integration over a
surface area that overlaps the computational domain, but it
must be many times as large as the domain to reduce the errors
to the levels achieved with our edge correction methods. This
is the reason why we developed the more computationally
efficient edge correction methods,
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